摘要
The intercalated kaolinite with potassium acetate (K-KAc), with ca. 91.9% intercalation ratio, was prepared. Thermogravimetric and variable-temperature X-ray powder diffraction analyses disclosed that a small amount of water is easily absorbed into the interlayer space of the K-KAc. The previously reported phase with the 14.2 Å interlayer distance is actually the hydrous K-KAc, which has an approximate formula of Al2Si2O5(OH)4·0.5KAc·0.25H2O. The crystal structures of hydrous and anhydrous phases of K-KAc were simulated in the density functional theory framework, demonstrating that the interactions between the K+ and acetate ions and the inner surface of kaolinite are significantly strengthened in the anhydrous phase with regard to the hydrous phase. The ionic conductivity of K-KAc indicated that the mobility of the interlayer ions is strongly improved by thermal activation and the conductivity increased by four orders of magnitude from 363 to 423 K.
源语言 | 英语 |
---|---|
页(从-至) | 4665-4670 |
页数 | 6 |
期刊 | Dalton Transactions |
卷 | 44 |
期 | 10 |
DOI | |
出版状态 | 已出版 - 14 3月 2015 |