摘要
Realizing the synergy between active site regulation and rational structural engineering is essential in the electrocatalysis community but still challenging. Here, a matrix-confined co-pyrolysis strategy based on molecular bridging is demonstrated to realize highly dispersed Fe atoms on stereoassembled carbon framework. Both polyacrylonitrile matrix and organic linker from metal–organic frameworks (MOFs) provide sufficient N-anchoring sites for the generation of Fe−N4 moieties. A high Fe loading of 2.9 wt.% is readily achieved based on the scalable approach without post-treatment. Owing to the presence of highly exposed Fe−N−C sites and well-tuned pore structures, isolated Fe atoms on porous carbon nanofiber framework (Fe−SA/NCF) exhibits decent oxygen reduction activity and stability in alkaline conditions via a near four-electron path, demonstrating superior performance as air cathode for zinc-air batteries (ZABs) to commercial Pt/C catalyst.
源语言 | 英语 |
---|---|
文章编号 | e202200789 |
期刊 | Chemistry - A European Journal |
卷 | 28 |
期 | 40 |
DOI | |
出版状态 | 已出版 - 15 7月 2022 |