TY - JOUR
T1 - The Contact Properties of Monolayer and Multilayer MoS2-Metal van der Waals Interfaces
AU - Pei, Xin
AU - Hu, Xiaohui
AU - Xu, Tao
AU - Sun, Litao
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/7
Y1 - 2024/7
N2 - The contact resistance formed between MoS2 and metal electrodes plays a key role in MoS2-based electronic devices. The Schottky barrier height (SBH) is a crucial parameter for determining the contact resistance. However, the SBH is difficult to modulate because of the strong Fermi-level pinning (FLP) at MoS2-metal interfaces. Here, we investigate the FLP effect and the contact types of monolayer and multilayer MoS2-metal van der Waals (vdW) interfaces using density functional theory (DFT) calculations based on Perdew–Burke–Ernzerhof (PBE) level. It has been demonstrated that, compared with monolayer MoS2-metal close interfaces, the FLP effect can be significantly reduced in monolayer MoS2-metal vdW interfaces. Furthermore, as the layer number of MoS2 increases from 1L to 4L, the FLP effect is first weakened and then increased, which can be attributed to the charge redistribution at the MoS2-metal and MoS2-MoS2 interfaces. In addition, the p-type Schottky contact can be achieved in 1L–4L MoS2-Pt, 3L MoS2-Au, and 2L–3L MoS2-Pd vdW interfaces, which is useful for realizing complementary metal oxide semiconductor (CMOS) logic circuits. These findings indicated that the FLP and contact types can be effectively modulated at MoS2-metal vdW interfaces by selecting the layer number of MoS2.
AB - The contact resistance formed between MoS2 and metal electrodes plays a key role in MoS2-based electronic devices. The Schottky barrier height (SBH) is a crucial parameter for determining the contact resistance. However, the SBH is difficult to modulate because of the strong Fermi-level pinning (FLP) at MoS2-metal interfaces. Here, we investigate the FLP effect and the contact types of monolayer and multilayer MoS2-metal van der Waals (vdW) interfaces using density functional theory (DFT) calculations based on Perdew–Burke–Ernzerhof (PBE) level. It has been demonstrated that, compared with monolayer MoS2-metal close interfaces, the FLP effect can be significantly reduced in monolayer MoS2-metal vdW interfaces. Furthermore, as the layer number of MoS2 increases from 1L to 4L, the FLP effect is first weakened and then increased, which can be attributed to the charge redistribution at the MoS2-metal and MoS2-MoS2 interfaces. In addition, the p-type Schottky contact can be achieved in 1L–4L MoS2-Pt, 3L MoS2-Au, and 2L–3L MoS2-Pd vdW interfaces, which is useful for realizing complementary metal oxide semiconductor (CMOS) logic circuits. These findings indicated that the FLP and contact types can be effectively modulated at MoS2-metal vdW interfaces by selecting the layer number of MoS2.
KW - Schottky barrier
KW - density functional theory
KW - electrical properties
KW - transition metal dichalcogenides
KW - two-dimensional materials
UR - http://www.scopus.com/inward/record.url?scp=85198414916&partnerID=8YFLogxK
U2 - 10.3390/nano14131075
DO - 10.3390/nano14131075
M3 - 文章
AN - SCOPUS:85198414916
SN - 2079-4991
VL - 14
JO - Nanomaterials
JF - Nanomaterials
IS - 13
M1 - 1075
ER -