TY - JOUR
T1 - Well-Coupled Nanohybrids Obtained by Component-Controlled Synthesis and in Situ Integration of MnxPdy Nanocrystals on Vulcan Carbon for Electrocatalytic Oxygen Reduction
AU - Lu, Yanan
AU - Zhao, Shulin
AU - Yang, Rui
AU - Xu, Dongdong
AU - Yang, Jing
AU - Lin, Yue
AU - Shi, Nai En
AU - Dai, Zhihui
AU - Bao, Jianchun
AU - Han, Min
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/3/7
Y1 - 2018/3/7
N2 - Development of cheap, highly active, and robust bimetallic nanocrystal (NC)-based nanohybrid (NH) electrocatalysts for oxygen reduction reaction (ORR) is helpful for advancing fuel cells or other renewable energy technologies. Here, four kinds of well-coupled MnxPdy(MnPd3, MnPd-Pd, Mn2Pd3, Mn2Pd3-Mn11Pd21)/C NHs have been synthesized by in situ integration of MnxPdy NCs with variable component ratios on pretreated Vulcan XC-72 C using the solvothermal method accompanied with annealing under Ar/H2 atmosphere and used as electrocatalysts for ORR. Among them, the MnPd3/C NHs possess the unique "half-embedded and half-encapsulated" interfaces and exhibit the highest catalytic activity, which can compete with some currently reported non-Pt catalysts (e.g., Ag-Co nanoalloys, Pd2NiAg NCs, PdCo/N-doped porous C, G-Cu3Pd nanocomposites, etc.), and close to commercial Pt/C. Electrocatalytic dynamic measurements disclose that their ORR mechanism abides by the direct 4e- pathway. Moreover, their durability and methanol-tolerant capability are much higher than that of Pt/C. As revealed by spectroscopic and electrochemical analyses, the excellent catalytic performance of MnPd3/C NHs results from the proper component ratio of Mn and Pd and the strong interplay of their constituents, which not only facilitate to optimize the d-band center or the electronic structure of Pd but also induce the phase transformation of MnPd3 active components and enhance their conductivity or interfacial electron transfer dynamics. This work demonstrates that MnPd3/C NHs are promising methanol-tolerant cathode electrocatalysts that may be employed in fuel cells or other renewable energy option.
AB - Development of cheap, highly active, and robust bimetallic nanocrystal (NC)-based nanohybrid (NH) electrocatalysts for oxygen reduction reaction (ORR) is helpful for advancing fuel cells or other renewable energy technologies. Here, four kinds of well-coupled MnxPdy(MnPd3, MnPd-Pd, Mn2Pd3, Mn2Pd3-Mn11Pd21)/C NHs have been synthesized by in situ integration of MnxPdy NCs with variable component ratios on pretreated Vulcan XC-72 C using the solvothermal method accompanied with annealing under Ar/H2 atmosphere and used as electrocatalysts for ORR. Among them, the MnPd3/C NHs possess the unique "half-embedded and half-encapsulated" interfaces and exhibit the highest catalytic activity, which can compete with some currently reported non-Pt catalysts (e.g., Ag-Co nanoalloys, Pd2NiAg NCs, PdCo/N-doped porous C, G-Cu3Pd nanocomposites, etc.), and close to commercial Pt/C. Electrocatalytic dynamic measurements disclose that their ORR mechanism abides by the direct 4e- pathway. Moreover, their durability and methanol-tolerant capability are much higher than that of Pt/C. As revealed by spectroscopic and electrochemical analyses, the excellent catalytic performance of MnPd3/C NHs results from the proper component ratio of Mn and Pd and the strong interplay of their constituents, which not only facilitate to optimize the d-band center or the electronic structure of Pd but also induce the phase transformation of MnPd3 active components and enhance their conductivity or interfacial electron transfer dynamics. This work demonstrates that MnPd3/C NHs are promising methanol-tolerant cathode electrocatalysts that may be employed in fuel cells or other renewable energy option.
UR - http://www.scopus.com/inward/record.url?scp=85043290748&partnerID=8YFLogxK
U2 - 10.1021/acsami.7b13872
DO - 10.1021/acsami.7b13872
M3 - 文章
C2 - 29384648
AN - SCOPUS:85043290748
SN - 1944-8244
VL - 10
SP - 8155
EP - 8164
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 9
ER -