Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-Scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O

Jinke Li, Wenfan Shao, Mei Geng, Shipeng Wan, Man Ou, Yuhui Chen

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

A Z-scheme photosystems combining Schottky junction and loading of applicable bandgap semiconductor is beneficial for enhancing the charge carriers’ separation/transfer as well as maintain their excellent redox ability. Here, CdxZn1-xS@Au was in-situ deposited on the (0 1 0) facets of BiVO4 taking Au as a bridge for constructing a sandwich structure CdxZn1-xS@Au/BiVO4 Z-scheme photocatalyst. The electrons in BiVO4 (0 1 0) migrate unidirectionally to Au nanoparticles across the Schottky junction and effectively suppress opposite electrons flow, then be captured by the excited holes in CdxZn1-xS. Furthermore, Zn-doping also contributes to an appropriate redox ability and charge carriers separation. Benefiting from the dual-facilitated effects, the ternary CdxZn1-xS@Au/BiVO4 exhibited superior photocatalytic activity for CO2 reduction under visible light irradiation using H2O as a reducing agent, as compared with CdS and CdS@Au/BiVO4. Furthermore, the intermediate product HCOO* fixed on the surface of CdxZn1-xS@Au/BiVO4 is identified by in-situ FT-IR, playing a key role in the conversion of CO2 to CO and then improve photocatalytic selectivity.

Original languageEnglish
Pages (from-to)1469-1476
Number of pages8
JournalJournal of Colloid and Interface Science
Volume606
DOIs
StatePublished - 15 Jan 2022

Keywords

  • CO reduction
  • Charge carriers
  • Schottky junction
  • Z-scheme

Fingerprint

Dive into the research topics of 'Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-Scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O'. Together they form a unique fingerprint.

Cite this