Kinetics of Alkali–Silica Reaction: Application to Sandstone

Yongfu Yang, Min Deng, Liwu Mo, Wei Li

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Despite extensive research, the relationship between the progression of the alkali–silica reaction (ASR) and the expansion of concrete due to ASR, particularly for the heterogeneous aggregate with slow reactivity, is not thoroughly understood. In this paper, the dissolution kinetics of reactive silica present in sandstone when exposed to NaOH solutions, alongside the expansion characteristics of rock prisms under ASR conditions, were studied. The experimental results indicate that ASR behaves as a first-order reaction, accompanied by an exponential decrease in the concentration of OH over time, and the dissolution rate of silica is predominantly governed by diffusion dynamics. Notably, increasing the temperature accelerates ASR, which augments the expansive pressure in a confined and limited space, leading to more significant aggregate expansion. Conversely, higher temperatures also result in a diminished retention of ASR gels within the aggregate, leading to the mitigation of ASR expansion. Our findings underscore that larger aggregates retain a greater quantity of gels, resulting in more pronounced expansion. To establish an ASR prediction model based on the relationship of the ASR expansion of concrete to high and low temperatures, the parameters such as the range of curing temperatures and the grading size of aggregates should be carefully considered for the experiments.

Original languageEnglish
Article number2956
JournalMaterials
Volume17
Issue number12
DOIs
StatePublished - Jun 2024

Keywords

  • alkali–silica reaction
  • kinetics
  • mechanism of ASR expansion
  • rock prism
  • sandstone

Fingerprint

Dive into the research topics of 'Kinetics of Alkali–Silica Reaction: Application to Sandstone'. Together they form a unique fingerprint.

Cite this