Kinetics of Alkali–Silica Reaction: Application to Sandstone

Yongfu Yang, Min Deng, Liwu Mo, Wei Li

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Despite extensive research, the relationship between the progression of the alkali–silica reaction (ASR) and the expansion of concrete due to ASR, particularly for the heterogeneous aggregate with slow reactivity, is not thoroughly understood. In this paper, the dissolution kinetics of reactive silica present in sandstone when exposed to NaOH solutions, alongside the expansion characteristics of rock prisms under ASR conditions, were studied. The experimental results indicate that ASR behaves as a first-order reaction, accompanied by an exponential decrease in the concentration of OH over time, and the dissolution rate of silica is predominantly governed by diffusion dynamics. Notably, increasing the temperature accelerates ASR, which augments the expansive pressure in a confined and limited space, leading to more significant aggregate expansion. Conversely, higher temperatures also result in a diminished retention of ASR gels within the aggregate, leading to the mitigation of ASR expansion. Our findings underscore that larger aggregates retain a greater quantity of gels, resulting in more pronounced expansion. To establish an ASR prediction model based on the relationship of the ASR expansion of concrete to high and low temperatures, the parameters such as the range of curing temperatures and the grading size of aggregates should be carefully considered for the experiments.

源语言英语
文章编号2956
期刊Materials
17
12
DOI
出版状态已出版 - 6月 2024

指纹

探究 'Kinetics of Alkali–Silica Reaction: Application to Sandstone' 的科研主题。它们共同构成独一无二的指纹。

引用此