TY - GEN
T1 - Numerical modeling of static and rotordynamic characteristics for three types of helically-grooved liquid annular seals
AU - Li, Zhigang
AU - Fang, Zhi
AU - Li, Jun
AU - Feng, Zhenping
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - This paper deals with numerical predictions of the leakage flow rates, drag power and rotordynamic force coefficients for three types of helically-grooved liquid annular seals, which include a liquid annular seal with helically-grooved stator (GS/SR seal), one with helically-grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). These seals are frequently used for multiple-stage centrifugal pumps as they have the advantage of low leakage (even to zero) due to the “pumping effect” of the helical grooves. However, the static and rotordynamic characteristics of helically-grooved liquid annular seals still are not fully understood, and even more pronounced is the lack of effective numerical models in the literature. A novel transient CFD-based perturbation method was proposed for the predictions of the leakage flow rates, drag power and rotordynamic force coefficients of helically-grooved liquid annular seals. This method is based on the unsteady Reynolds-Averaged Navier–Stokes (RANS) solution with the mesh deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and Fast Fourier Transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons to the published experiment data of leakage flow rates and fluid response forces for three types of helically-grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for three types of helically-grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient. Results show that the GS/GR seal has the best sealing capability, followed by the GS/SR seal and then the SS/GR seal. The leakage flow rate of all three helically-grooved seals monotonically decreases with the increasing rotational speed. The GS/SR seal possesses the best stiffness and damping capability, followed by the SS/GR seal and then the GS/GR seal. Rotordynamic instability problems are more likely caused by the GS/GR seal in multi-stage centrifugal pumps. From a rotordynamic viewpoint, the GS/SR helically-grooved liquid annular seal is a better seal concept for multi-stage centrifugal pumps.
AB - This paper deals with numerical predictions of the leakage flow rates, drag power and rotordynamic force coefficients for three types of helically-grooved liquid annular seals, which include a liquid annular seal with helically-grooved stator (GS/SR seal), one with helically-grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). These seals are frequently used for multiple-stage centrifugal pumps as they have the advantage of low leakage (even to zero) due to the “pumping effect” of the helical grooves. However, the static and rotordynamic characteristics of helically-grooved liquid annular seals still are not fully understood, and even more pronounced is the lack of effective numerical models in the literature. A novel transient CFD-based perturbation method was proposed for the predictions of the leakage flow rates, drag power and rotordynamic force coefficients of helically-grooved liquid annular seals. This method is based on the unsteady Reynolds-Averaged Navier–Stokes (RANS) solution with the mesh deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and Fast Fourier Transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons to the published experiment data of leakage flow rates and fluid response forces for three types of helically-grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for three types of helically-grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient. Results show that the GS/GR seal has the best sealing capability, followed by the GS/SR seal and then the SS/GR seal. The leakage flow rate of all three helically-grooved seals monotonically decreases with the increasing rotational speed. The GS/SR seal possesses the best stiffness and damping capability, followed by the SS/GR seal and then the GS/GR seal. Rotordynamic instability problems are more likely caused by the GS/GR seal in multi-stage centrifugal pumps. From a rotordynamic viewpoint, the GS/SR helically-grooved liquid annular seal is a better seal concept for multi-stage centrifugal pumps.
UR - http://www.scopus.com/inward/record.url?scp=85075803458&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90779
DO - 10.1115/GT2019-90779
M3 - 会议稿件
AN - SCOPUS:85075803458
T3 - Proceedings of the ASME Turbo Expo
BT - Structures and Dynamics
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -