Numerical modeling of static and rotordynamic characteristics for three types of helically-grooved liquid annular seals

Zhigang Li, Zhi Fang, Jun Li, Zhenping Feng

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

This paper deals with numerical predictions of the leakage flow rates, drag power and rotordynamic force coefficients for three types of helically-grooved liquid annular seals, which include a liquid annular seal with helically-grooved stator (GS/SR seal), one with helically-grooved rotor (SS/GR seal), and one with helical grooves on stator and rotor (GS/GR seal). These seals are frequently used for multiple-stage centrifugal pumps as they have the advantage of low leakage (even to zero) due to the “pumping effect” of the helical grooves. However, the static and rotordynamic characteristics of helically-grooved liquid annular seals still are not fully understood, and even more pronounced is the lack of effective numerical models in the literature. A novel transient CFD-based perturbation method was proposed for the predictions of the leakage flow rates, drag power and rotordynamic force coefficients of helically-grooved liquid annular seals. This method is based on the unsteady Reynolds-Averaged Navier–Stokes (RANS) solution with the mesh deformation technique and the multiple reference frame theory. The time-varying fluid-induced forces acting on the rotor/stator surface were obtained as a response to the time-dependent perturbation of the seal stator surface with the periodic motion, based on the multiple-frequency elliptical-orbit stator whirling model. The frequency-independent rotordynamic force coefficients were determined using curve fit and Fast Fourier Transform (FFT) in the frequency domain. The CFD-based method was adequately validated by comparisons to the published experiment data of leakage flow rates and fluid response forces for three types of helically-grooved liquid annular seals. Based on the transient CFD-based perturbation method, numerical results of the leakage flow rates, drag powers and rotordynamic force coefficients were presented and compared for three types of helically-grooved liquid annular seals at five rotational speeds (n = 0.5 krpm, 1.0 krpm, 2.0 krpm, 3.0 krpm and 4.0 krpm), paying special attention to the effective stiffness coefficient and effective damping coefficient. Results show that the GS/GR seal has the best sealing capability, followed by the GS/SR seal and then the SS/GR seal. The leakage flow rate of all three helically-grooved seals monotonically decreases with the increasing rotational speed. The GS/SR seal possesses the best stiffness and damping capability, followed by the SS/GR seal and then the GS/GR seal. Rotordynamic instability problems are more likely caused by the GS/GR seal in multi-stage centrifugal pumps. From a rotordynamic viewpoint, the GS/SR helically-grooved liquid annular seal is a better seal concept for multi-stage centrifugal pumps.

源语言英语
主期刊名Structures and Dynamics
出版商American Society of Mechanical Engineers (ASME)
ISBN(电子版)9780791858691
DOI
出版状态已出版 - 2019
已对外发布
活动ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019 - Phoenix, 美国
期限: 17 6月 201921 6月 2019

出版系列

姓名Proceedings of the ASME Turbo Expo
7B-2019

会议

会议ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
国家/地区美国
Phoenix
时期17/06/1921/06/19

指纹

探究 'Numerical modeling of static and rotordynamic characteristics for three types of helically-grooved liquid annular seals' 的科研主题。它们共同构成独一无二的指纹。

引用此