TY - JOUR
T1 - Boosting one-step degradation of shrimp shell waste to produce chitin oligosaccharides at smart nanoscale enzyme reactor with liquid-solid system
AU - Wang, Ziteng
AU - Cai, Yijin
AU - Li, Mingxuan
AU - Wan, Xiaoru
AU - Mi, Li
AU - Yang, Wenge
AU - Hu, Yonghong
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5
Y1 - 2024/5
N2 - Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective. To address this challenge, a chitinase nanoreactor with the liquid-solid system (BcChiA1@ZIF-8) was manufactured to boost the one-step degradation of SSW and crystalline chitin. Compared with free enzyme, the catalytic efficiency of BcChiA1@ZIF-8 on colloidal chitin was significantly improved to 142 %. SSW and crystalline chitin can be directly degraded by BcChiA1@ZIF-8 without any pretreatments. The yield of N, N′-diacetylchitobiose [(GlcNAc)2] from SSW and N-acetyl-D-glucosamine (GlcNAc) from crystalline chitin was 2 times and 3.1 times than that of free enzyme, respectively. The reason was that BcChiA1@ZIF-8 with a liquid-solid system enlarged the interface area, increased the collision frequency between enzyme and substrate, and improved the large-substrates binding activity of chitinase. Moreover, the biphasic system exhibited excellent stability, and the design showed universal applicability. This strategy provided novel guidance for other polysaccharide biosynthesis and the conversion of environmental waste into carbohydrates.
AB - Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective. To address this challenge, a chitinase nanoreactor with the liquid-solid system (BcChiA1@ZIF-8) was manufactured to boost the one-step degradation of SSW and crystalline chitin. Compared with free enzyme, the catalytic efficiency of BcChiA1@ZIF-8 on colloidal chitin was significantly improved to 142 %. SSW and crystalline chitin can be directly degraded by BcChiA1@ZIF-8 without any pretreatments. The yield of N, N′-diacetylchitobiose [(GlcNAc)2] from SSW and N-acetyl-D-glucosamine (GlcNAc) from crystalline chitin was 2 times and 3.1 times than that of free enzyme, respectively. The reason was that BcChiA1@ZIF-8 with a liquid-solid system enlarged the interface area, increased the collision frequency between enzyme and substrate, and improved the large-substrates binding activity of chitinase. Moreover, the biphasic system exhibited excellent stability, and the design showed universal applicability. This strategy provided novel guidance for other polysaccharide biosynthesis and the conversion of environmental waste into carbohydrates.
KW - Chitin oligosaccharides
KW - Chitinase
KW - Liquid-solid system
KW - Shrimp shell waste
KW - ZIF-8
UR - http://www.scopus.com/inward/record.url?scp=85191662796&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.131787
DO - 10.1016/j.ijbiomac.2024.131787
M3 - 文章
C2 - 38657939
AN - SCOPUS:85191662796
SN - 0141-8130
VL - 268
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 131787
ER -