Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy

Yu Cai, Pingping Liang, Qianyun Tang, Xiaoyan Yang, Weili Si, Wei Huang, Qi Zhang, Xiaochen Dong

科研成果: 期刊稿件文章同行评审

392 引用 (Scopus)

摘要

Herein, a donor-acceptor-donor (D-A-D) structured small molecule (DPP-TPA) is designed and synthesized for photoacoustic imaging (PAI) guided photodynamic/photothermal synergistic therapy. In the diketopyrrolopyrrole (DPP) molecule, a thiophene group is contained to increase the intersystem crossing (ISC) ability through the heavy atom effect. Simultaneously, triphenylamine (TPA) is introduced for bathochromic shift absorption as well as charge transport capacity enhancement. After formation of nanoparticles (NPs, ∼76 nm) by reprecipitation, the absorption of DPP-TPA NPs further displays obvious bathochromic-shift with the maximum absorption peak at 660 nm. What's more, the NPs architecture enhances the D-A-D structure, which greatly increases the charge transport capacity and impels the charge to generate heat by light. DPP-TPA NPs present high photothermal conversion efficiency ( 34.5%) and excellent singlet oxygen (1O2) generation (πδ= 33.6%) under 660 nm laser irradiation. PAI, with high spatial resolution and deep biotissue penetration, indicates DPP-TPA NPs can rapidly target the tumor sites within 2 h by the enhanced permeability and retention (EPR) effect. Importantly, DPP-TPA NPs could effectively hinder the tumor growth by photodynamic/photothermal synergistic therapy in vivo even at a low dosage (0.2 mg/kg) upon laser irradiation (660 nm 1.0 W/cm2). This study illuminates the photothermal conversion mechanism of small organic NPs and demonstrates the promising application of DPP-TPA NPs in PAI guided phototherapy.

源语言英语
页(从-至)1054-1063
页数10
期刊ACS Nano
11
1
DOI
出版状态已出版 - 24 1月 2017

指纹

探究 'Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy' 的科研主题。它们共同构成独一无二的指纹。

引用此