TY - JOUR
T1 - Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy
AU - Cai, Yu
AU - Liang, Pingping
AU - Tang, Qianyun
AU - Yang, Xiaoyan
AU - Si, Weili
AU - Huang, Wei
AU - Zhang, Qi
AU - Dong, Xiaochen
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2017/1/24
Y1 - 2017/1/24
N2 - Herein, a donor-acceptor-donor (D-A-D) structured small molecule (DPP-TPA) is designed and synthesized for photoacoustic imaging (PAI) guided photodynamic/photothermal synergistic therapy. In the diketopyrrolopyrrole (DPP) molecule, a thiophene group is contained to increase the intersystem crossing (ISC) ability through the heavy atom effect. Simultaneously, triphenylamine (TPA) is introduced for bathochromic shift absorption as well as charge transport capacity enhancement. After formation of nanoparticles (NPs, ∼76 nm) by reprecipitation, the absorption of DPP-TPA NPs further displays obvious bathochromic-shift with the maximum absorption peak at 660 nm. What's more, the NPs architecture enhances the D-A-D structure, which greatly increases the charge transport capacity and impels the charge to generate heat by light. DPP-TPA NPs present high photothermal conversion efficiency ( 34.5%) and excellent singlet oxygen (1O2) generation (πδ= 33.6%) under 660 nm laser irradiation. PAI, with high spatial resolution and deep biotissue penetration, indicates DPP-TPA NPs can rapidly target the tumor sites within 2 h by the enhanced permeability and retention (EPR) effect. Importantly, DPP-TPA NPs could effectively hinder the tumor growth by photodynamic/photothermal synergistic therapy in vivo even at a low dosage (0.2 mg/kg) upon laser irradiation (660 nm 1.0 W/cm2). This study illuminates the photothermal conversion mechanism of small organic NPs and demonstrates the promising application of DPP-TPA NPs in PAI guided phototherapy.
AB - Herein, a donor-acceptor-donor (D-A-D) structured small molecule (DPP-TPA) is designed and synthesized for photoacoustic imaging (PAI) guided photodynamic/photothermal synergistic therapy. In the diketopyrrolopyrrole (DPP) molecule, a thiophene group is contained to increase the intersystem crossing (ISC) ability through the heavy atom effect. Simultaneously, triphenylamine (TPA) is introduced for bathochromic shift absorption as well as charge transport capacity enhancement. After formation of nanoparticles (NPs, ∼76 nm) by reprecipitation, the absorption of DPP-TPA NPs further displays obvious bathochromic-shift with the maximum absorption peak at 660 nm. What's more, the NPs architecture enhances the D-A-D structure, which greatly increases the charge transport capacity and impels the charge to generate heat by light. DPP-TPA NPs present high photothermal conversion efficiency ( 34.5%) and excellent singlet oxygen (1O2) generation (πδ= 33.6%) under 660 nm laser irradiation. PAI, with high spatial resolution and deep biotissue penetration, indicates DPP-TPA NPs can rapidly target the tumor sites within 2 h by the enhanced permeability and retention (EPR) effect. Importantly, DPP-TPA NPs could effectively hinder the tumor growth by photodynamic/photothermal synergistic therapy in vivo even at a low dosage (0.2 mg/kg) upon laser irradiation (660 nm 1.0 W/cm2). This study illuminates the photothermal conversion mechanism of small organic NPs and demonstrates the promising application of DPP-TPA NPs in PAI guided phototherapy.
KW - multifunctional reagents
KW - organic nanoparticles
KW - photoacoustic imaging
KW - phototherapy
KW - tumor
UR - http://www.scopus.com/inward/record.url?scp=85018192870&partnerID=8YFLogxK
U2 - 10.1021/acsnano.6b07927
DO - 10.1021/acsnano.6b07927
M3 - 文章
C2 - 28033465
AN - SCOPUS:85018192870
SN - 1936-0851
VL - 11
SP - 1054
EP - 1063
JO - ACS Nano
JF - ACS Nano
IS - 1
ER -