TY - JOUR
T1 - Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate
AU - Mi, Le
AU - Qin, Dandan
AU - Cheng, Jie
AU - Wang, Dan
AU - Li, Sha
AU - Wei, Xuetuan
N1 - Publisher Copyright:
© 2017, Society for Industrial Microbiology and Biotechnology.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Two engineered Escherichia coli strains, DQ101 (MG1655 fadD−)/pDQTES and DQ101 (MG1655 fadD−)/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase ‘TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD−)-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD−)/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD−)/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.
AB - Two engineered Escherichia coli strains, DQ101 (MG1655 fadD−)/pDQTES and DQ101 (MG1655 fadD−)/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase ‘TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD−)-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD−)/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD−)/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.
KW - Arabinose
KW - Bamboo hydrolysate
KW - Enzyme
KW - Free fatty acids
KW - Ionic liquid
UR - http://www.scopus.com/inward/record.url?scp=85009725567&partnerID=8YFLogxK
U2 - 10.1007/s10295-016-1888-6
DO - 10.1007/s10295-016-1888-6
M3 - 文章
C2 - 28097501
AN - SCOPUS:85009725567
SN - 1367-5435
VL - 44
SP - 419
EP - 430
JO - Journal of Industrial Microbiology and Biotechnology
JF - Journal of Industrial Microbiology and Biotechnology
IS - 3
ER -